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Abstract
The nucleation of islands during the first order phase transition in a materially
open system is studied. Expressions for the island size and density are obtained
as functions of the temperature, material flux and the total concentration of
material introduced into the system. It is shown that at a certain critical
concentration the transition from the thermodynamically to the kinetically
controlled regime of nucleation is observed. In the subcritical range the
density of islands increases with temperature and the amount of material
and is flux independent. In the overcritical range the density decreases with
the temperature, increases with the flux and does not depend on the total
concentration. The characteristic size of the islands decreases simultaneously
with the increase of their density.

1. Introduction

The kinetics of nucleation constitutes an important part of the entire theory of the first order
phase transitions [1, 2]. Condensation of supersaturated vapours, solidification of liquid alloys,
growth of crystals from melts, aggregation of islands in dense adsorbates, nucleation of thin
films and many other physical phenomena can be described within the frame of this theory. The
number of applications of nucleation theory rapidly increases. In particular, it has been recently
applied to studying the kinetics of formation of coherent islands in strained heteroepitaxial
systems [3–5], a problem that has an important impact on the technology of quantum dot
fabrication [6]. One of the main advantages of nucleation theory is the opportunity to describe
the time evolution of a particular system with given material constants under strongly non-
equilibrium conditions. The timescale hierarchy of different stages of phase transition enables
us to distinguish the stage of arrangement of the steady state in the near-critical region [7],
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the nucleation stage [2], the size relaxation stage [1], the stage of ripening [8] and the stage
of direct coalescence of islands leading to the formation of a continuous condensed phase [9].
In many cases, in particular during the deposition of thin films and heteroepitaxial growth of
quantum dots, the nucleation process is technologically controlled [6, 10]. This provides an
opportunity to change the external parameters of the island formation process and to stop it at
the desired stage of growth.

The most important structural characteristics of an island ensemble during the first order
phase transition are the island density N and average size L. These quantities can be
controlled experimentally with high accuracy and therefore are suitable for the verification
of theoretical models. Also, the values of N and L in largest measure determine the physical
properties of technologically fabricated structures,for example crystallites obtained by freezing
transitions [11], thin films [10] and quantum dot heterostructures [6] grown on a solid surface
by various deposition techniques. To control the process of island formation, we require an
adequate theoretical description of the dependence of island size and density on the external
parameters of the process. In many cases, the metastability of a condensing system is ensured
by a material flux into the system of a certain intensity V . The source of this flux can be a
chemical reaction in the system induced by some external factors, arrival of particles into the
system from the surroundings, deposition of atoms onto a surface etc. The measure of the
system metastability is supersaturation ζ = n/ne −1, where n is the concentration of particles
of a condensing phase and ne is its equilibrium concentration, which is a known function of
system temperature T . Below we consider the case of T = const for a condensing phase and
all islands of a new phase. The isothermal conditions of nucleation are normally ensured by
the presence of a passive substance or substrate stabilized at temperature T and playing the
role of a thermal reservoir. The classical nucleation theory [1, 2, 10] can be applied only to the
case of sufficiently low temperatures, i.e. when T is well below the critical temperature Tc. For
concreteness, we assume that the time dependence of V is given by V (t) = V = const at t < t0
and V (t) = 0 at t > t0, where t0 is the moment when the material flux is switched off. If the
escape of particles from the system is not allowed (in the case of adsorbates and thin films, this
means the effective absence of desorption on a timescale of interest, which is conventional for
theoretical models of molecular beam epitaxy and related growth techniques [3–5]), the total
concentration of particles in the system is given by ntot = V t at t � t0 and ntot = V t0 ≡ nmax

at t > t0. Here nmax is the total concentration of the material introduced into the system
before the material flux is switched off. Under the described assumptions, the major control
parameters of the nucleation process are the temperature T , the intensity of material flux V
and the total amount of condensing substance nmax.

In this work we investigate the island formation kinetics at temperatures well below the
critical temperature Tc. Only the initial stage of the process is studied, when there is no indirect
or direct interaction between the islands (ripening [8], elastic interactions [6], coalescence [9]
etc). The major goal of our study is to find theoretical dependences of the island density N
and size LR after the size relaxation stage on the external parameters of the nucleation process,
N(T, V , nmax) and LR(T, V , nmax). For the description of the condensing and new phases
of the system we use the lattice gas (LG) model, which is widely used to study first order
phase transitions [13] especially in adsorbates [14] and thin films [10]. A dilute condensing
phase is described as a system with barrier jump diffusion between the LG sites. Two-
dimensional (2D) and three-dimensional (3D) systems are considered simultaneously. The
present study was partly stimulated by our recent work [4] devoted to the kinetics of coherent
island formation in heteroepitaxial systems. There it was shown that if the concentration
of material exceeds a certain critical value (the definition of this critical concentration will be
given below), the density of islands increases and their size decreases on increasing the material
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flux and decreasing the temperature of the system. This theoretical conclusion is confirmed
by many experimental studies of quantum dot ensembles, in particular in the Ge/Si(100) and
InAs/GaAs(100) heteroepitaxial systems [5]. In this work it will be shown that the described
performance of island ensembles in the overcritical range has a general character and holds
for all systems undergoing the first order phase transition in a materially open system. All
overcritical island ensembles are essentially kinetically controlled. In the subcritical range of
concentrations, the dependence of island size and density on the external parameters is totally
different and is primarily determined by thermodynamics. This indicates the transition form a
thermodynamically to a kinetically controlled regime of nucleation in a materially open system
at a certain critical concentration, an effect which has been recently predicted in the case of
islanding during heteroepitaxy in strained systems [15]. Our results can be summarized in the
form of graphs of the relaxed island size and density as functions of the total concentration of
material nmax at different values of T and V . These graphs provide a detailed characterization
of the structural properties of island ensembles at the kinetic stage of phase transition.

2. The model

Concerning the theory of the first order phase transitions within the frame of the LG model, the
mean field equation of state [13] at T < (5/2)Tc gives the following result for the equilibrium
concentration of a dilute phase at temperature T :

ne(T ) = n0 exp

(
−2

Tc

T

)
. (1)

The equilibrium concentration of a dense phase is very close to the maximum density n0 = l−α
0 ,

where l0 is the lattice spacing and α is the space dimension (α = 2 for 2D and α = 3 for 3D
LG). A dilute phase can be assumed to be ideal. Here and below the lattice is assumed to be
square or cubic; the islands of a new phase are also assumed to have the shape of squares or
cubes for the 2D and 3D case respectively. The free energy of formation of an island with i
particles (expressed in thermal units) in the case of homogeneous nucleation is given by [1]

�F(i) = Ai (α−1)/α − ln(ζ + 1)i. (2)

The first term gives the energy required to create the interface boundary between the island
of a dense phase and a dilute phase, and the second term presents the difference in chemical
potentials of dilute and dense phases. The parameter A ≡ 2αlα−1

0 γ /kBT is proportional to
the specific interface energy γ per unit area in the 3D case or per unit length in the 2D case
(surface tension for liquid drops, surface energy for crystals, interfacial boundary energy for
monolayer islands); kB is the Boltzmann constant. For modest variations in T , the temperature
dependence of A in liquids and solids can be approximated in the form [16]

A(T ) = TA

T
− B (3)

where TA ≡ 2αlα−1
0 �h/kB and B ≡ 2αlα−1

0 �s; �h and �s are the specific enthalpy and
entropy of the boundary formation, respectively. The values of TA and B can be assumed to be
approximately constant. Obviously, the critical temperature Tc and the characteristic interface
temperature TA are entirely the equilibrium values. Using equation (1), the main parameters
of the classical nucleation theory [1] are found in the form

ic =
[
(α − 1)

α

A

ln(ζ + 1)

]α

(4)

F ≡ �F(ic) = (α − 1)α−1

αα

A
α

lnα−1(ζ + 1)
. (5)
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Here ic is the number of particles in the critical nuclei and F is the nucleation barrier in thermal
units. As a function of supersaturation ζ , the nucleation barrier decreases with increasing ζ ,
i.e. the higher the supersaturation the lower is the barrier that must be surpassed by the nuclei
due to thermodynamic fluctuations to undergo the phase transition. At fixed ζ , the nucleation
barrier lowers at increasing temperature, because the intensity of fluctuations in the subcritical
region increases.

In order to calculate the growth rate of overcritical islands (i � ic), we utilize the
expression di/dt = W +(i)(1 − ne/n) [1] where W +(i) is the rate of attachment of particles
to the nuclei with i particles. Using the simplest approximation for the diffusion coefficient in
condensed matter [16], the attachment rate can be presented as [10]

W +(i) = Si l0n
ν

2α
exp

(
− TD

T

)
. (6)

Here Si = 2αlα−1
0 i (α−1)/α is the area (length) of the boundary of island with i particles, ν

is the vibration frequency of atoms in the LG sites, 2α is the number of nearest neighbours
for a diffusion jump, TD ≡ ED/kB is the characteristic diffusion temperature and ED is the
activation energy for a diffusion jump. Equation (6) holds, for example, for the crystallization
of material A from a dilute liquid alloy A–B (including the case of crystallization on the solid
surface of material A) and for 2D islanding of material A on the solid surface of material B,
but is not valid in the case of vapour condensation. In terms of the variable ρ ≡ L/ l0 = i 1/α ,
which equals the linear size of islands expressed in the units of lattice spacing, the island
growth rate does not depend on the island size:

dρ

dt
= ζ

τ
. (7)

The characteristic time of island growth in view of equation (6) is given by

τ = α
n0

νne
exp

(
TD

T

)
. (8)

The characteristic time τ strongly decreases with T , because the increase in temperature speeds
up the diffusion processes. Obviously, the diffusion temperature TD has an essentially kinetic
origin.

The nucleation rate in classical condensation theory is found from the Zeldovich
formula [2]

I = nW +(ic)

√
− F ′′(ic)

2π
e−F . (9)

The stationary size distribution gs = Iτ/ζ is very quickly attained in the whole near-critical
region [7]. Using equations (2), (4), (6) and (8), the expression for the stationary distribution
expressed in the units of equilibrium concentration of particles, fs ≡ gs/ne, takes the form

fs(ζ ) = α(3−α)/2(α − 1)α/2−1

√
2π

Aα/2−1 ln(3−α)/2(ζ + 1)
(ζ + 1)2

ζ
e−F(ζ ). (10)

The exponential dependence of fs on F(ζ ) given by equation (10) demonstrates that the
stationary distribution is extremely sensitive to the changes in supersaturation (for a relatively
small increase in ζ the stationary distribution increases in order of magnitude). Equation (10)
is valid only at F(ζ ) � 1 [4, 10, 12].

The independence of the island growth rate from island size ρ enables us to write the
following solution for the size distribution of islands f (ρ, t) (expressed in the units of ne) in
the whole overcritical region [4, 10, 12]:

f (ρ, t) = fs(ζ(x)) ≡ f (x) (11)
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where x(ρ, t) = z(t) − ρ. The function z(t) determines the time evolution of the island size
distribution. The definition of z(t) according to

dz

dt
= ζ

τ
; z(t = t∗) = 0 (12)

where t∗ is the moment at which the supersaturation reaches its maximum, selects z(t) as the
most representative linear size of islands that were nucleated at maximum supersaturation and
therefore at maximum nucleation rate: z(t) = L∗(t)/ l0.

The equation of material balance in the materially open system with an incoming material
flux can be presented in the form [3]

	 = ζ + G. (13)

Here 	 ≡ ntot/ne − 1 is the ideal supersaturation, i.e. the supersaturation that would be
established in the system in the absence of nucleation, and G is the total number of atoms in
the islands in the units of ne. Since the characteristic size z(t) increases in time, equation (13)
can be equally considered in terms of variables t or z. Under the assumptions on the form of
material flux made in the introduction, the time dependence of ideal supersaturation is given
by

	(t) =
{

t/t∞, 0 � t � t0
t0/t∞ ≡ 	0, t > t0.

(14)

Here t∞ = ne/V is the time required to reach the equilibrium concentration of a dilute phase
from zero concentration at the material flux of intensity V and 	0 ≡ nmax/ne − 1 is the
maximum ideal supersaturation reached by the moment of the interruption of material flux.
The function G in terms of variable z can be presented in the form

G(z) =
∫ z

−∞
dx (z − x)α f (x) (15)

where i = ρα is taken into account. Equations (11)–(15) constitute the closed system of
equations for the island size distribution and supersaturation and therefore enable us to find
the island characteristic size and density as functions of time and the control parameters of
the condensation process. As shown by Kuni [12], an extremely strong non-linearity of the
problem allows us to construct a self-consistent analytical solution for the major characteristics
of the condensation process.

3. Solutions for critical supersaturation, island size and density

The exponential dependence of the stationary distribution on the supersaturation enables us to
use the following approximation for f (x) near the point of maximum supersaturation [4, 12]:

f (x) = fs(	∗) exp

[
− 


	∗
(	∗ − ζ(x))

]
(16)

where the assumption ζ∗ ≈ 	∗ means that at the point of maximum supersaturation the total
number of particles in the islands is negligibly small. The parameter


 = −	∗
dF

dζ

∣∣∣∣
ζ=	∗

= 	∗
	∗ + 1

ic(	∗) (17)

is of the order of the number of atoms in the critical nuclei at supersaturation 	∗ and
therefore can be considered as the large parameter of the theory [12]. The last relationship in
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equation (17) is obtained by using equations (4) and (5). In view of equation (14) and ζ∗ ≈ 	∗,
the ideal supersaturation near 	∗ can be presented in the form

	(x) =
{

	∗ + (	∗/
)cx, x � z0

	∗ + (	∗/
)z0, x > z0.
(18)

Here the parameter c is given by

c = 


	∗
d	

dx

∣∣∣∣
x=0

= 


	2∗ Q
. (19)

It should be remembered that according to equations (19) and (17) the parameters 
 and c
depend on 	∗. The kinetic control parameter Q introduced in [4] is determined by the ratio
between the characteristic time of ideal supersaturation growth t∞ and the characteristic time
of island growth τ , Q ≡ t∞/τ . As the ratio of timescales of macroscopic and microscopic
processes, the parameter Q is very large (normally Q > 100). Employing the above definitions
for t∞ and τ and making use of equation (1), the resulting dependence of Q on the temperature
and material flux reads

Q(T, V ) = V0

V
exp

(
− TD + 4Tc

T

)
(20)

with V0 ≡ νn0/α. Thus, the kinetic control parameter is inversely proportional to the intensity
of material flux and increases with temperature as the Arrhenius exponent [4].

The parameter z0 in equation (18) is determined by the total concentration of
material introduced into the system (maximum ideal supersaturation 	0) and the maximum
supersaturation 	∗:

z0 = 


c

(
	0

	∗
− 1

)
. (21)

Equations (18) and (21) demonstrate an important difference between the following two
cases [12]:

Overcritical range: 	0 > 	c; 	∗ = 	c; z0 > 0 (22)

Subcritical range: 	0 < 	c; 	∗ = 	0; z0 = 0. (23)

At the overcritical value of the total amount of material introduced into the system (	0 > 	c),
the maximum of supersaturation is reached due to a kinetic balance between the arrival
of particles into the system from a material flux and the consumption of particles by the
growing islands. In the subcritical range of 	0 (	0 < 	c), the maximum supersaturation is
reached simply as the result of the interruption of a material flux. In this case the maximum
supersaturation equals 	0. The critical supersaturation 	c should be determined from the
equation of material balance at dζ/dz/z=0 = 0 and at this stage is unknown.

The scheme of further calculations is fairly straightforward and in the overcritical range
in the case of quantum dot formation in strained heteroepitaxial systems is described in detail
in [4]. According to equations (13), (16) and (18), the distribution f (x) near its maximum can
be presented in the form

f (x) = fs(	∗)

{
exp[cx − (
/	∗)G(x)], x � z0

exp[cz0 − (
/	∗)G(x)], x > z0.
(24)

Substitution of these expressions into equation (15) gives the closed integral equation for G(z).
This equation is solved by iterations. It can be shown [12] that the first approximation of the
solution corresponding to substitution of G(x) = 0 into the integral term ensures a high relative
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accuracy of the results. In particular, in the essentially overcritical range (at sufficiently large
z0) G(z) is found in the form

G(z) = fs(	c)

∫ z

−∞
dx (z − x)αecx = α!

cα+1
fs(	c)ecz. (25)

This equation allows us to find the critical supersaturation 	c and the normalization constant
of the island size distribution fs(	c). Differentiating equation (13) with respect to z, using
equations (25), (18) and the condition dζ/dz/z=0 = 0 at the point of maximum supersaturation,
one obtains

fs(	c) = 	c

α!

cα+1. (26)

Comparing equation (10) at ζ = 	∗ and equation (19) it is seen that the only two terms
that can compete with each other in equation (26) are very large quantities exp[F(	c)] and
Qα+1. Therefore, in a logarithmical scale equation (26) gives the relationship between the
thermodynamic and kinetic parameters in the form

F(	c) = (α + 1) ln Q. (27)

Making use of equations (1), (3), (5) and (20), the final expression for the critical supersaturation
is obtained as

	c(T, V ) = exp

[(
Cα

(TA/T − B)α

ln(V0/V ) − (TD + 4Tc)/T

)1/(α−1)]
− 1 (28)

where Cα ≡ (α − 1)α−1/αα(α + 1) = 1/27 for α = 3 and 1/12 for α = 2. Critical
supersaturation rapidly decreases with the temperature and less rapidly increases with the
material flux. The critical concentration according to the definition for 	c is given by
nc = (	c + 1)ne and the time to reach the critical concentration from zero concentration
amounts to tc = nc/V .

Substitution of the obtained result for G(x) into equations (24) gives the self-consistent
expressions for the island size distribution f (x). In particular, for the essentially overcritical
range form equations (24)–(26) it follows that the size distribution f (x) = fs(	∗) exp[cx −
exp(cx)] and therefore is approximately Gaussian. The density of islands N is then found
from

N = ne

∫ ∞

−∞
dx f (x). (29)

The characteristic size of islands at the end of the size relaxation stage (ζ → 0,	 → 	0, L∗ →
LR) is found from the equation of material balance by using the mono-disperse approximation
for the size distribution [4]: 	0 = G(z) ≈ (N/ne)(LR/ l0)

α . The characteristic size at the end
of the size relaxation stage is therefore determined by the density of islands and by the total
concentration of material in the system nmax

LR = l0

(
ne

N
	0

)1/α

= l0

(
nmax − ne

N

)1/α

. (30)

Obviously, the island size relaxation takes a longer time for subcritical islands.
Omitting the results of calculations, the final equation for the island density is obtained in

the form

N = K Nmax(1 − e− f + G( f )) (31)
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where

K =
{

(	c/	0)
α[(	c + 1) ln(	c + 1)/(	0 + 1) ln(	0 + 1)]α−1

1,	0 > 	c,
	0 � 	c (32)

f =




[ln(	0 + 1)/ ln(	c + 1)]α
2+(3−α)/2(	0/	c)

α[(	0 + 1)/(	c + 1)]α+2

× exp[−(F(	0) − F(	c))], 	0 � 	c

exp[
c(	0/	c − 1)], 	0 > 	c

(33)

G( f ) = f
∫ ∞

0
dµ exp

[
− f

α+1∑
i=0

µi

i !

]
(34)

and 
c ≡ 
(	c). The maximum density Nmax reached in the overcritical concentration range
is given by

Nmax = ne

α!

[
α(α + 1)

A

]α 1

	α
c (	c + 1)α−1

(
ln Q

Q

)α

. (35)

Using equation (28) for 	c, equation (17) and (4) at 	∗ = 	c for 
c, equation (5) for
F(	0) and F(	c), equation (1) for ne(T ), equation (3) for A(T) and equation (20) for Q(T, V)

and taking into account that 	0 ≡ nmax/ne − 1, the obtained equations (30)–(35) provide the
description of island size and density depending on the thermodynamic parameters Tc, TA, B ,
the characteristic diffusion temperature TD and the control parameters of nucleation process
T , V and nmax. The kinetics of average size L∗(t) at the size relaxation stage can be described
by an equation similar to that given in [4].

4. Transition from thermodynamically to kinetically controlled regime of nucleation

The asymptotic analysis of the obtained equations for N and LR enables us to find analytically
the leading dependence of the island size and density on the temperature, material flux and
ideal supersaturation in essentially overcritical ( f � 1) and essentially subcritical ( f 	 1)

ranges of total concentration of material. Obviously, at f � 1 K = 1, G( f ) → 0 and
N → Nmax. The leading T V dependence of Nmax determined by equation (35) at 	c ∼ 1 is
therefore N ∝ Q−α . In view of equations (1), (20) and (30), the density and size of islands
depend on the control parameters T, V and 	0 as follows:

N = Nmax ∝ n0V α exp

[
αTD + (4α − 2)Tc

T

]
(36)

LR ∝ l0
	

1/α

0

V
exp

(
− TD + 4Tc

T

)
. (37)

At very small or large 	c the exponential dependence 	c(T, V ) determined by equation (28)
should be taken into account and equations (36), (37) will be modified. At 	c ∼ 1 the
density increases with the material flux as V α , decreases with the temperature as the Arrhenius
exponent and is independent of the total concentration. The island size decreases with the flux
as 1/V , increases with the temperature and slowly increases with the ideal supersaturation
	0. The temperature dependence contains the kinetic diffusion temperature TD. Therefore,
the structure of the overcritical ensembles of islands is essentially kinetically controlled.

At f 	 1, 1 − exp(− f ) ≈ f and the asymptotic behaviour of G( f ) is given by
G( f ) ≈ [(α + 1)!]1/(α+1) f α/(α+1)
[1/(α + 1)]/(α + 1) (
 here denotes the gamma function).
Therefore, the leading asymptotic of N at f 	 1 is K NmaxG( f ) ∼ Nmax f α/(α+1) ∼
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Nmax exp[(α/(α + 1)(F(	c) − F(	0))]. Using equation (27) for F(	c), equaton (35) for
Nmax and equation (30) for LR, the leading dependences of island density and size on the
control parameters are obtained in the form

N ∝ ne exp

[
− α

α + 1
F(	0)

]
∝ n0 exp

[
−2Tc

T
− (α − 1)α−1

(α + 1)αα−1

(TA/T − B)α

lnα−1(	0 + 1)

]
(38)

LR ∝ l0 exp

[
F(	0)

α + 1

]
∝ l0 exp

[
(α − 1)α−1

(α + 1)αα

(TA/T − B)α

lnα−1(	0 + 1)

]
. (39)

In 3D space, the island density and size in the subcritical concentration range depend on the
nucleation barrier at maximum supersaturation 	0 as exp[−(3/4)F(	0)] and exp[F(	0)/4),
respectively (the result previously obtained in [12] for the case of condensation of a
supersaturated vapour). In 2D space these dependences are given by exp[−(2/3)(	0)] and
exp[F(	0)/3), respectively. The explicit dependence on T and 	0 in equations (38) and (39)
is obtained from equations (3) and (5). Equations (38) and (39) show that the density of
islands strongly increases and their size decreases on increasing the ideal supersaturation
and temperature. All subcritical structures are flux independent. The relaxed islands are
considerably larger and their density is much lower than in the overcritical range. The
dependence of N and LR on T and 	0 contains no kinetic parameters. Therefore, the structure
of subcritical ensembles of islands is controlled by thermodynamics. The density of subcritical
islands is considerably lower and their size is larger than in the overcritical concentration range.

The calculations were performed using equations (17) and (30)–(35) in the case of
formation of 2D islands on the solid surface from supersaturated ‘vapour’ of adatoms (α = 2)
for the following model parameters: l0 = 0.4 nm, Tc = 2200 K, TA = 4200 K, B = 1,
TD = 10 500 K (ED ≈ 0.9 eV), ν = 1012 s−1. For these parameters n0 = 6.25 × 1014 cm−2

and V0 = 1.56 × 1026 cm−2 s−1. At T = 600 K and V = 2 × 1010 cm−2 s−1 we get
ne = 6.5 × 10−4n0 = 4.1 × 1011 cm−2, 	c = 0.797, F(	c) = 15.4, 
c = 12 and Q = 167.
The time to reach the equilibrium concentration t∞ = 20.5 s, and the critical time tc = 37 s.
After the end of the nucleation stage in the overcritical concentration range the adatoms reach
the surface density Nmax = 1.7 × 108 cm−2. The average size of overcritical islands at
	0 = 1.5	c is 21.6 nm. The dependences of island size and density on the maximum ideal
supersaturation in the system at different values of temperature and material flux for these
parameters are presented in figures 1–4.

Figure 1 illustrates the typical temperature behaviour of island density. It is seen that at
higher temperatures the nucleation under the material flux starts at lower critical supersaturation
and the resulting density of overcritical islands is quite low. At lower temperatures the
nucleation process requires higher critical supersaturation while the density of islands rapidly
increases. Graphs of figure 2 present the dependence of average island size on ideal
supersaturation at different temperatures. The size of relaxed islands rapidly decreases with
the concentration of material in the system in the subcritical range, reaches its minimum at the
critical concentration and then slowly increases with further increase in concentration. The
size of overcritical islands strongly increases with the temperature.

The dependences of island size on ideal supersaturation at fixed growth rate and
different temperatures convert in the near-critical range, indicating the transition from the
thermodynamically to the kinetically controlled regime of nucleation in a materially open
system.

As illustrated by the graphs in figure 3, at lower material flux into the system the nucleation
starts earlier; however, the density of overcritical islands is smaller. With increasing flux the
N(	0) curves become steeper, the nucleation starts at higher critical concentration and the
resulting density in the overcritical concentration range is larger.
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Figure 1. Dependences of island density on the ideal supersaturation at constant material flux
V = 2 × 1010 cm−2 s−1 and three different temperatures for the model parameters described in
the text. The critical concentration 	c amounts to 0.797, 0.531 and 0.387 at T = 600, 625 and
650 K respectively.
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Figure 2. Dependences of average size of relaxed islands on the ideal supersaturation at constant
flux V = 2 × 1010 cm−2 s−1 and three different temperatures.

Figure 4 shows that the average size of relaxed islands is flux independent in the subcritical
range and considerably decreases with increasing flux in the overcritical range. The dependence
on ideal supersaturation is qualitatively the same as in figure 2. The size and density diagrams
at fixed temperature and varying growth rate split in the near-critical range, thus indicating
the transition to the kinetically controlled regime of nucleation at a larger concentration of
material. The presented diagrams provide a characterization of island ensembles depending
on the control parameters T , V and 	0 at the initial stage of nucleation and independent growth
of islands.

5. Conclusions

The presented study shows an important difference in the behaviour of island ensembles below
and above a certain critical concentration of material introduced into the system. It is shown that
in the subcritical concentration range the structure of the island ensemble is thermodynamically
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Figure 3. Dependences of island density on the ideal supersaturation at constant temperature
T = 600 K and three different values of material flux. The critical concentration 	c amounts to
0.646, 0.797 and 0.916 at V = 0.8, 2 and 3.3 × 1010 cm−2 s−1 respectively.

Figure 4. Dependences of average size of relaxed islands on the ideal supersaturation at constant
temperature T = 600 K and three different values of material flux.

controlled, while in the overcritical range the structure is primarily determined by the growth
kinetics. Therefore, the temperature, material flux and total concentration dependences of
island size and density exhibit principally different behaviours at nmax < nc and nmax > nc,
as demonstrated by the obtained analytical formulae and the diagrams presented in figures 1
and 2. The use of a specific form of island formation energy and island growth function
within the frame of the LG model is not critical for the general conclusions. Other choices of
these functions will bring some new numbers in; however, the described behaviour of island
ensembles will remain qualitatively the same. It is important that the presented approach
also enables us to obtain the value of critical concentration as a function of the energetic
parameters and temperature of the system. The presented approach can be modified to include
the description of island size distribution [4, 12] and in particular to find the size distribution
width at different conditions. One of the examples of critical concentration is the critical
thickness of a wetting layer in strained heteroepitaxial systems relating to the transition from
2D to 3D growth [4], a value that can be controlled experimentally with high accuracy [6].
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It should be pointed out that the described behaviour of the system is valid only for the
initial stage of growth when the islands are small and the ensemble is dilute. Further evolution
of the island ensemble during the first order phase transition in the materially open system will
depend on the character of island–island interactions in the system. The obtained solutions for
island size and density provide the relevant initial condition for the description of later stages
of evolution towards the global equilibrium state of the system. Also, the presented results
demonstrate the possibility of a kinetically controlled engineering of island ensembles with
the desired structural properties by an appropriate choice of growth conditions (temperature
and material flux) and the effective concentration of material introduced into the system.
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[11] Schöpe H J and Palberg T 2002 J. Phys.: Condens. Matter 14 11573
[12] Kuni F M 1984 The Kinetics of Condensation Under the Dynamical Conditions (Kiev: Institute of Theoretical

Physics)
[13] Brout R 1965 Phase Transitions (New York: University of Brussels)
[14] Kreuzer H-J 1991 Phys. Rev. B 44 1232
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